NewsCred marketing website
SLOs: the path to adoption starts with SLI creation
Case study

Anomaly Detection: proactive, reliable alerting powered by AI

UI UX

My team devised and built Anomaly Detection, a greenfield feature launched as part of a strategic, multi-channel campaign. As one of three new products under the umbrella of Honeycomb Intelligence, an AI-native observability suite for software developers, its unveiling generated early access signups from enterprise teams including Slack, Intercom, HelloFresh, and Duolingo.

Honeycomb's software is property of Hound Technology, Inc. This case study is not sponsored by Honeycomb. The information presented in this case study is derived from: social media, blog posts, documentation, press releases, and analyst reports.


The Signals Team shipped an MVP that learns service data normalcy and automatically surfaces deviations.

Problem: alert configuration was a barrier for new and existing teams, and false positives eroded trust

While Honeycomb's value was well understood by the market, my team found that friction in alert creation inhibited the realization of that value. Teams, whose primary use case was understanding service health and being alerted about issues, were often discouraged and/or confused about how to get started. Configuring useful alerts was complicated and required a deep understanding of an application's system, as well as its nuanced performance patterns. For this cohort, the learning curve was simply too steep to overcome.

Business opportunity

My team recognized a pivotal moment to: greatly reduce time to value (TTV) by getting started with alerts faster, reduce alert fatigue by highlighting only meaningful deviations, and lower mean time to resolution (MTTR) by enabing investigations with our complementary AI feature, Canvas. Paired with Canvas, users could investigate their anomalies without needing to write the perfect query; they could simply ask a question like, “Why are response times slower for these users?” We believed these improvements would put us in a position to increase adoption for both new and existing teams and win more deals with enterprise organizations who demanded out-of-the-box tooling.

As evidenced by Ramp.com's vendor assessment, Honeycomb's set up contributed towards its reputation as a tool best suited for advanced teams.

Solution: continuousy learn what "normal" looks like and automatically send alerts when performance deviates

We envisioned a world where Anomaly Detection eliminated long-standing friction for alert creation. By learning normal service behavior and improving over time, the algorithm would automatically detect true irregularities in signals like error rate and latency, before they impact our customers' customers. The value proposition: reduce false positives and alert fatigue for software developers.

Requirements for our MVP

Informed by a proof of concept from our data/UX consultant and technical discovery from our engineering lead, the triad converged on acceptance criteria. We felt confident that this scope sufficiently balanced impact and effort to: deliver just enough value, facilitate conversations with early access users to learn what else would be needed, and not be overly demanding on our backend:

  • Anomaly profiles for services would be spun up manually, and the early access teams would choose their services during onboarding.
  • Deviations lasting more than 5 minutes would be considered an anomaly.
  • Anomalies would be presented via two views: a list of services and their status (anomalous or normal), and a detail panel showing when anomalies occurred.
  • Anomalies within a previous 2-hour window would be visualized on a graph.
  • Start with the error rate signal type. Based on query data in Honeycomb, we understood this signal to be the most popular among the four golden signals.
  • Enable an investigative workflow by allowing users to run a query.
  • Email and Slack would be the first available notification channels; Pagerduty and Webhooks would be considered later.

To understand engagement and effectiveness, we planned to instrument our code to analyze metrics like: service list page loads, service name clicks, notification recipient adds, and 'Run Query' button clicks.

Acknowledging and documenting risks at the outset

The team discussed and captured technical and UX risks that would help inform future decisions. These risks would remind us which aspects of the experience to check in on throughout our early access phase.

  • Noisy alerts. A key value proposition of Anomaly Detection is to reduce false positives by providing intelligent, dynamic alerts based on genuine issues. We understood the possibility that Anomaly Detection's algorithm, which wouldn't be adjustable by the user at first, could result in noise — therefore negating the entire purpose of the feature. Ideally, the algoritm would learn and adjust on the fly to accommodate varying use cases; "normal" can look very different across teams given their industries and traffic patterns. For example, one customer in the construction sector expected little to no traffic to their app on weekends. Automatically accounting for this flavor of seasonality would be critical. We agreed that adoption would be heavily influenced by users' first impressions, and inaccuracies would not do us any favors.
  • A disjointed workflow. Since the feature was greenfield, it was most efficient to develop it in an isolated area of the platform — accessible via its own item in our main navigation. We acknowledged the primary risk of this being a fragmented user flow. We noted the need to revisit its home in the future in order to integrate it into a cohesive alerting flow.
  • Anomalies as another alert type. Honeycomb's alerting suite thus far consisted of Service Level Objectives (SLOs) and Triggers, both of which are incredibly effective and widely adopted (Triggers a bit more so than SLOs). Would the addition of a third alert type confuse users? Would they understand the value of Anomalies and the use cases for each alert type?
  • Configuring notifications would be manual. While anomalies would automatically detected, recipients who would receive alerts would need to configured manually. Could this result in frustration?
  • Statuses could be misleading. We anticipated a scenario where a service, which was recently anomalous, now reads "normal." Technically, this would be accurate, but we felt some users might want additional context to understand the nuance. This sparked a discussion among the triad members about a potential third status.

Designing the experience

To reduce engineering effort and still provide a delightful experience, I proposed making use of our existing components and patterns wherever possible. This meant upcycling our list view, which was already being used for Triggers and SLOs. The previous quarter, another Product Designer contributed a drawer component to our design library, a panel that would slide over the top of a page from the right side of the browser. This panel would be a perfect home for our anomaly detail content. During development, engineering ran into an issue where tool tips within the drawer didn't display. I worked with the App Enablement Team, who maintains our design library, to address this at the component level. This small investment allowed tool tips to be used in any future implementations of the drawer component, for all product teams.

In order to indicate on the graph where an anomaly begins, we repurposed functionality and styling from markers; vertical bars on our Query page that denoted deployments. We invested some effort to represent the "normal" range using light gray shading, and highlight anomalous periods using semi-transparent red shading.

For the recipients table, we decided to invest in a new interaction pattern to quickly add, edit, remove, and test a recipient in-line, without leaving the table. Existing instances of recipients in the product required users to configure them in a modal, which we felt would detract from the user's flow. I paired with engineering to define the interaction details, and worked with the App Enablement Team to contribute the new pattern to our design library. This was an investment that allowed other product teams to use the pattern in their own list views moving forward.

Sampling of early sketches to explore information hierarchy and graphing for data presence.

The MVP we set out to implement and test with Customer Development Partners.

The MVP we set out to implement and test with Customer Development Partners.

User testing

While our mighty engineering team charged ahead with technical discovery and backend development to get our infrastructure in place, I ran on a parallel path to test the usability and comprehensibility of my designs using a clickable Figma prototype. I partnered with the Director of Product, our Product Manager (PM), and the Customer Success Team to recruit Customer Development Partners (CDPs) for user interviews. My PM and I met with a handful of these external users, as well as some internal users, to assess the usability of my design: Was the information architecture clear? Was it obvious how to navigate through services? Was the information presented in the graph easily understood? What would they want to do next? Is it clear how to take that action? How would this experience stack up against others participants had used? What was missing?

Analyzing interaction and comprehension

  • Users wanted to understand how irregularies fit into the bigger picture; to tell a story about who is impacted and the level of severity.
  • Users tried to navigate to the previous or next service by clicking on the list view, which would close the detail drawer.
  • Users wanted to adjust the algorithm's sensitivity to accommodate seasonality.
  • Users wanted to increase the time window to show anomalies beyond the previous two hours.
  • Users voiced concerns about noisy alerts. They expected "is this a valid anomaly?" to train the underlying algorithm and reduce noise over time.
  • Users liked how we visualized the threshold and wanted it carried over to Query page.
  • Users wondered how the feature would connect with the rest of Honeycomb.
  • Users expected to be able to see all notification channels and recipients up front in the list view.

Data presence as a potential signal type

Alerting users about a drop in data or an absence of data was something we were particularly excited about because of its impact/effort ratio. Knowing whether events are flowing from a service is a valuable signal that can launch an investigation, and engineering estimated a relatively low level of effort to enable this.

An important nuance of data presence is that you can have a lack of data that isn't sustained long enough to be an anomaly. The UX challenge: How do you visually distinguish between an interruption in data that's anomalous and one that isn't? Despite having many data visualizations types across the platform, Honeycomb had never needed to graph binary data. As such, it was crucial to represent data presence in an intuitive way, since our explorations would likely become the standard for graphing binary data elsewhere in Honeycomb. To derisk, I worked with our tech lead to understand what data visualizations were supported by our charting library. With this constraint in mind, I mocked a fictitious scenario using three graph styles and posted them in a survey to our customer Slack space. We acknowledged a certain amount of bias from this channel, given many of the responses come from a group of Honeycomb champions, but we felt some signal would increase our confidence. The feedback indicated that a categorical bar chart, where a lack of data was represented by a gap, was most intuitive (Opt A).

I tested chart options for the data presence signal type to derisk our data visualization.

I brought my research to the Design Team's weekly critique to get internal feedback about the styling and comprehensibility. This ensured my designs were aligned with our design library and consistent with other graphs in the product.

Launch, initial results, and key learnings

Launch

Anomaly Detection was unveiled during a coordinated, multi-channel launch in collaboration with the Product Marketing Team. In person, it was demo'ed at Observability Day San Francisco | What's Next: The Future of Observability in the Age of AI, a live event for software developers sponsored by Amazon AWS. Digitally, it was launched via AI Week, a LinkedIn campaign that raised awareness about each component of our new AI suite, Honeycomb Intelligence. Teams signed up for the early access program in person and by contacting their Customer Success representative.

Product and marketing leaders demo'ed our Anomaly Detection MVP during AI Week, an online campaign that coincided with Observability Day.

Software engineers listen intently to the presentations and demos given at Honeycomb's Observability Day 2025 in San Francisco

Our co-founders and Developer Relations Team demo'ed Anomaly Detection at Observability Day, an AWS-sponsored event in San Francisco that coincided with AI Week.

Reception and learnings

Initial signals from the early access announcement indicated positive sentiment. Honeycomb users and other DevOps professionals provided positive feedback on LinkedIn and in various articles about Honeycomb Intelligence:

By tying real-time data, AI-guided investigation, and proactive detection into a single loop, Honeycomb is building toward something bigger: a world where systems explain themselves.
I think this is the right direction for the future: from traditional monitoring ("I know what I need"), to complementing it with observability ("let me explore my telemetry"), landing to this "what do I need to know?".
The approach to anomaly detection you're sharing really highlights how observability can transform the investigative process for engineers.
It sounds like a powerful way to simplify investigations.
Love how you're handling detection at the source instead of just patching symptoms. Proactive anomaly detection is so needed, especially as systems get more complex.

The one-two punch of Observability Day and AI Week yielded more sign-ups than we were able to accommodate (a good problem to have!), given the overhead of manually onboarding teams' services during the early access phase. This was certainly not detrimental to the project, but additional usage would have provided more, helpful user data about our MVP's capabilities and usability.

Despite the enthusiasm expressed by so many teams during the early access phase, we were surprised to see low and slow adoption over the remainder of the quarter. We believed the delays were a symptom of poor timing — the latter of half of Q4 is a challenging time given the holidays and competing end-of-year priorities like OKRs, reporting, and planning.

On the UX side, we realized the drawer component wouldn't scale well if settings and additional signal types were added. Anomaly details would likely need to be migrated to their own dedicated page.